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Abstract

New energetic particle mode instabilities of fishbone type are pre-

dicted. The considered instabilities are driven by the circulating en-

ergetic ions. They can arise in plasmas of tokamaks and spherical tori

with weak magnetic shear in the wide core region and strong shear

at the periphery, provided that the central safety factor is close to

the ratio m/n, where m and n are the poloidal mode number and

toroidal mode number, respectively. The instability with m = n = 1

has interchange-like spatial structure, whereas the structure of insta-

bilities with m/n > 1 is similar to that of the infernal MHD mode

(except for the region in vicinity of the local Alfvén resonance).



I. INTRODUCTION

Fishbone oscillation is an important collective phenomenon caused by the ener-

getic ions in tokamak plasmas.1 This phenomenon is associated with perturbations

of the Alfvén type. The perturbations have the frequency, ω, equal to either the

bulk ion diamagnetic frequency, ω∗i, or a characteristic frequency determined by

the energetic ions. In the latter case, the instability is called the Energetic Par-

ticle Mode (EPM). Instabilities of the EPM type are presumably responsible for

fishbones with bursting character and strong frequency chirping. The first theo-

retical explanation of experimentally observed fishbone oscillations was based on

a prediction of an EPM instability.2 This instability was caused by the trapped

energetic ions; it was actually a rigid m = n = 1 kink displacement (m and n are

the poloidal mode number and toroidal mode number, respectively) and had the

frequency of approximately the precession frequency of the energetic ions, ωt
D. A

little later an instability with the frequency ω ≈ ω∗i and a similar spatial structure

was discovered.3 Fishbone instabilities with the same structure were studied also

in subsequent works. However, trapped-particle-induced EPM fishbones can have

another, interchange-like, structure. This was shown for the case when magnetic

shear, ŝ, is small in the plasma core and the magnetic field strength, B, is low,

which is typical for spherical tori.4 On the other hand, circulating-particle-induced

EPM fishbone instability in systems with small shear and low magnetic field has not

been considered yet. Moreover, a conventional circulating-particle-induced EPM

fishbone instability was considered only recently.4,5

Fishbone instability of the EPM type is actually an Alfvén instability with

the frequency lying in the Alfvén continuum region [in contrast to “Alfvén gap

modes” such as Toroidicity-induced Alfvén Eigenmodes (TAE)]. It differs from an-

other mode in the Alfvén continuum region, Global Alfvén Eigenmode (GAE),

whose frequency is determined by the bulk plasma and lies below the Alfvén con-

tinuum branch corresponding to a dominant Fourier harmonic of the mode (the
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GAE frequency intersects the Alfvén continuum of satellite harmonics only). Be-

ing a continuum mode, EPM fishbones suffer from continuum damping; therefore,

this instability arises when the pressure of the energetic ions exceeds a threshold

value associated with this damping.

In the case of the conventional m = n = 1 fishbone instability associated with

trapped particles, there are two points of the local Alfvén resonance, r(1)
res and r(2)

res.

Both these points are located close to the q = 1 radius [ q(r) is the safety factor],

r(1)
res = rs − ∆ and r(2)

res = rs + ∆, with ∆ � rs and rs is defined by q(rs) = m/n.

The small magnitude of ∆ is explained by the fact that ω/ωAC(r = 0) � 1,

where ωAC ≈ |ι(r)−1|vA(r)/R is the Alfvén continuum frequency, vA is the Alfvén

velocity, R is the large radius of the torus, and ι = q−1 is the rotational transform.

This implies that finite frequency of the mode, ω ∼ ωt
D, affects the structure of

MHD perturbations with ω = 0, i.e., internal kink mode, only in the region where

the mode amplitude is quickly decreasing. When B is low, and/or q is close to

unity inside the q = 1 radius, the ratio ω/ωAC(0) is not small because ω/ωAC(0) ∝

ωt
D/ωAC(0) ∝ (ι0 − 1)−1B−2, with ι0 = ι(r = 0). Because of this, r(2)

res is shifted to

the right, where the mode amplitude is much less than that at r = 0, whereas the

resonance point r(1)
res may disappear.4 In this case, the structure of the ideal MHD

perturbations with ω = 0 is again not essentially affected by the energetic ions, but

this structure has nothing to do with the rigid kink displacement.4

Circulating-ion-induced EPM fishbone instability in large-shear systems has

the frequency ω ∼ (ŝv2
α)/(rsRωcα) = 2ŝωt

D, where vα is the birth velocity of the

energetic ions, ωcα is the energetic ion gyrofrequency.4,5 We conclude from this that

ωc ∼ ωt for ŝ ∼ 1, where ωt and ωc are frequencies of the modes associated with

trapped ions and circulating ions, respectively. Therefore, finite mode frequency

weakly affects the rigid kink structure, which justifies the approach used in Refs. 4,

5. The mentioned instability is caused by only those particles which intersect the

q = 1 surface, as in the case of the fishbone instability with ω ≈ ω∗i considered in

Ref. 6.
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The situation changes when the magnetic shear at r < rs is small and q0 ≈ m/n.

Then the MHD stability numerical calculations predict the existence of pressure-

driven ”infernal” modes in plasmas with a shearless core.7–10 A particular case of

these instabilities is a quasi-interchange mode with m = n = 1, which was studied

analytically in Ref. 11–13. The eigenfunction of this instability has convective,

”cellular” character, in contrast to the rigid kink displacement in the finite shear

case.14 This mode structure will not change essentially in the presence of the cir-

culating energetic ions when the points of the local Alfvén resonance are located

in the periphery region, where the shear is not small.

The non-rigid character of perturbations in low-shear systems has an important

consequence: It provides a strong energy exchange between the energetic ions and

perturbations through the resonance ω = k‖v‖ [k‖ = (mι − n)/R is the longitu-

dinal wavenumber, v‖ is the particle velocity along the magnetic field], which is a

particular case of the resonance ω = [k‖ + s/(qR)]v‖ (s is an integer). The latter

resonance immediately follows from the equation dε/dt ∝ δ ~E · ~vD 6= 0, where ε is

the energy of well circulating particles, δ ~E = δ ~E[r(θ), θ, φ] is the perturbed electric

field, θ and φ are the poloidal and toroidal angles, respectively, r(θ) describes the

particle orbit, ~vD is the velocity of the toroidal drift, the line over the magnitudes

means time averaging. Due to small shear, the resonance provides wave-particle

interaction in a wide plasma region (rather than in the region rs − ∆b < r < rs,

where ∆b is the particle orbit width, which is the case when the mode represents

rigid kink displacement6). Moreover, due to this resonance a possible mode fre-

quency is ω ∼ k‖(0)vα and, thus, ω > ωA(0) when vα > vA, which implies that

the Alfvén resonance points are located at the periphery. Note that the above

mentioned general resonance condition provides also interaction of the circulating

energetic ions with perturbations having higher frequency, ω � k‖(0)vα, which is

the case when s 6= 0.

The purpose of this work is to consider possible EPM fishbone instabilities

driven by circulating energetic ions in plasmas with the safety factor close to unity
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or other low-order rationals in a core region surrounded by a region with large

magnetic shear. Such behavior of q(r) is typical for spherical tori.15 In addition,

q(r) is close to unity in the plasma core in many tokamak experiments; this also

will be the case in the ITER third operational scenario, the so called ”hybrid”

regime.16,17 Note that fishbone oscillations with m 6= n 6= 1 were observed in

plasmas with q(0) ∼ 2 of the National Spherical Torus Experiment (NSTX).18 We

consider both the modes with m = n = 1 and m 6= n. Our analysis will be based

on the approach of Refs. 12, 13 extended to the case when the plasma contains a

small number of the energetic ions. This will be done with the assumption that

only kinetic (non-adiabatic) response of the energetic ions is important.

The structure of the paper is as follows. In Sec. II a dispersion relation describ-

ing an EPM fishbone mode with m = n = 1 in low-shear systems is derived and

analyzed. In Sec. III the modes with m 6= n 6= 1 are considered. In Sec. IV the

obtained results are summarized.

II. INTERCHANGE FISHBONE MODE

We consider a plasma with a strong-shear periphery and shearless core that

contains a small number of well circulating energetic ions with the distribution

function, Fα, given by

Fα(r̄, ε, Λ) =
m3/2

α

2
√

2 πεα

pα(r̄)H(r0 − r)H(εα − ε)ε−3/2δ(Λ), (1)

where r̄ is the average radius of a particle during its orbital motion, Λ = µB0/ε,

µ is the particle magnetic moment, B0 is the magnetic field at the magnetic axis,

εα is the birth energy, pα(r̄) =
∫

d3vmαv2
‖Fα is the beam particle pressure, H(x) is

the unit step function, δ(x) is the Heaviside δ-function, r0 is the radius restricting

the shearless core.

Below we derive an equation describing an m = n = 1 EPM fishbone mode.

We proceed from the energy functional, δE , written as
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δE =
R

π2B2
0

(δWMHD + δWk)−
ω2

ω2
A

N, (2)

where δWMHD is the ideal MHD potential energy12–14,19,20, δWk is the kinetic part

of the potential energy, which describes the resonant energy exchange between the

energetic ions and fishbone mode, ωA = vA/R, vA is the Alfvén velocity. The last

term in Eq. (2) represents the kinetic energy. In this term

N =
1

2π2R

∫
d3r|~ξ⊥|2, (3)

with ~ξ⊥ the transverse plasma displacement. The magnitude δWk is given by (we

used Refs. 21, 22)

δWk ≡
1

2

∫
~ξ∗⊥ · ∇δΠk

αd3r = −π2mα

ωcα

×

∑
σv

∫
v3dv

∫
dr̄
∫

dΛτb
∂Fα

∂ε

ω − ω∗α
ω − k‖v‖

∣∣∣∣∣
〈(

v2
⊥
2

+ v2
‖

)
~ξ⊥ · ~κ exp[i(ω − k‖v‖)t]

〉∣∣∣∣∣
2

, (4)

where δΠk
α = δpk

⊥αÎ +(δpk
‖α−δpk

⊥α)~b~b is the pressure tensor, Î is the identity tensor,

δpk
‖/⊥α is the parallel/perpendicular pressure perturbation associated with the non-

adiabatic response of energetic ions, σv = v‖/|v‖|, ~κ is the field line curvature, τb

is the particle transit time, ω∗α is the diamagnetic drift frequency of the energetic

ions, and 〈....〉 denotes the orbit averaging.

First of all, we perform orbit averaging and calculate the velocity integral in

Eq. (4). Omitting the term odd in θ in ~ξ⊥ ·~κ in the integrand of Eq. (4) (this term

does not contribute to δWk) we obtain

~ξ⊥ · ~κ = − 1

R
ξ1{r[θ(t)]} cos[θ(t)] exp{i[θ(t)− φ(t)− ωt]}, (5)

where ξ1 is the amplitude of the m = 1 radial displacement,

r[θ(t)] = r̄ + ∆α cos[θ(t)], θ(t) =
v‖

q(r̄)R
t, φ(t) =

v‖
R

t, (6)

∆α = (q(r̄)/v‖ωcα)
(
0.5v2

⊥ + v2
‖

)
, ∆α � r̄. Due to Eq. (6) we can expand ξ1[r(θ)]

in Eq. (5) in a Taylor series at the point r̄. Substituting the result into Eq. (4) and

using Eq. (1) we obtain after the calculation of the integrals:
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δWk = −πB2
0ρ

3
αF

(
ω

k‖0vα

)∫ a

0
dr̄

∣∣∣∣∣dξ1

dr̄

∣∣∣∣∣
2
dβα

dr̄
, (7)

where ρα = vα/ωcα, k‖0 = k‖(0), βα = 8πpα/B2
0 (βα = 0 for r > r0),

F (Ω) ≡ 1

5
+

Ω

4
+

Ω2

3
+

Ω3

2
+ Ω4 + Ω5 ln

(
1− 1

Ω

)
, (8)

and ω � ω∗α has been assumed. It follows from Eq. (7) that when the mode is

characterized by dξ1/dr 6= 0 in a wide region, the energy exchange between the

mode and energetic particles is most effective. Below we will show that such a

mode really exists. Note that, in contrast to this, dξ1/dr = 0 inside the q = 1

radius for the rigid kink displacement during the conventional fishbone instability.

Using Eq. (7) and taking for simplicity βα in the form βα = βα0[1 −

(r̄/r0)
4]H(r0−r̄) we obtain the following Euler equations from Eq. (2) (r̄ is replaced

with r):

d

dr

{[
(ι− 1)2 + lα(ω, r)− ω2

ω2
A

]
r3dξ1

dr

}
−G{ξ1} = Ĉ{ξ2}, (9)

d

dr

[(
ι− 1

2

)2

r3dξ2

dr

]
− 3

(
ι− 1

2

)2

rξ2 = Ĉ+{ξ1}, (10)

where

lα(ω, r) ≡ 4

π

ρ3
αR

r4
0

βα0F

(
ω

k‖0vα

)
H(r0 − r), (11)

ξ2 is the amplitude of the m = 2 radial displacement (the m = 2 harmonic is

coupled with the m = 1 harmonic due to toroidicity), G is the toroidal driving

term, Ĉ and Ĉ+ are the toroidal coupling operators. The explicit forms of G and

Ĉ are given in Ref. 12. The operator Ĉ+ is adjoint to Ĉ:

∫ a

0
drf(r)Ĉ{g(r)} =

∫ a

0
drg(r)Ĉ+{f(r)}. (12)

We assume that ω/ωA = O(ε), |ι − 1| = O(ε), β = O(ε2), G(ξ1) = O(ε2ξ1),

Ĉ(ξ) = O(εξ) ξ2 = O(ε)ξ1 (ε = a/R, a the plasma radius) in the plasma core.

Due to the mentioned ordering, we can take ι = 1 at r ≤ r0 in the terms G, Ĉ

and Ĉ+. Then Eqs. (9), (10) can be written as [cf. Eqs. (44a,b) of Ref.12]:
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d

dr̃

{
ε−2

[
(ι0 − 1)2 + lα(ω, r̃)− ω2

ω2
A

]
r̃3dξ1

dr̃

}
− 4

(
r̃

4
β′p + βp

)2

r̃3ξ1

= (
r̃

4
β′p + βp

)
d

dr̃
(r̃3ξ̂2), (13)

d

dr̃

(
r̃3dξ̂2

dr̃

)
− 3r̃ξ̂2 = −4r̃3 d

dr̃

[(
r̃

4
β′p + βp

)
ξ1

]
, (14)

where r̃ = r/a, ξ̂2 is defined by ξ2 ≡ εξ̂2, prime denotes the radial derivative,

βp(r̃) = − 8πR2

a2r̃4B2
0

∫ r̃

0
r̂2dpc

dr̂
dr̂. (15)

The general solution of Eq. (14), which is regular on the axis, is given by12

ξ̂2 = r̃−3
∫ r̃

0
r̂4βp(r̂)

dξ1

dr̂
dr̂ + [C1 − βp(r̃)ξ1(r̃)]r̃, (16)

where C1 is an integration constant. Putting Eq. (16) into Eq. (13) and integrating,

we find:

dξ1

dr̃
=

ε2C1r̃βp

(ι− 1)2 + lα(ω, r̃)− ω2/ω2
A

. (17)

The dispersion relation can be obtained by matching the solution in the inner

(shear-free) region to the solution in the outer (sheared) region. In the latter region

|ι− 1| ∼ 1, therefore, ξ1 ∼ ε2, as follows from Eq. (17). Due to this, we can neglect

the toroidal coupling in Eq. (10) and write the mentioned equation as follows:

d

dr

[(
ι− 1

2

)2

r3dξ̂2

dr

]
− 3

(
ι− 1

2

)2

rξ̂2 = 0. (18)

Equation (18) has the following asymptotic solution in the shear-free region:

ξ̂2 ∝
r

r2

+ σ
(

r

r2

)−3

, (19)

where r2 is defined by ι(r2) = 1/2 and the constant σ can be determined by

integrating Eq. (18) over the outer region. To calculate σ, ι(r) is to be specified.

In particular, when ι(r) is given by12
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ι =
1

2
+
(
ι0 −

1

2

) [
1−

(
r

r2

)2λ
]
, (20)

with λ ≥ 3, then

σ ≈ 1

3

(
1− 2

λ

)
. (21)

Matching Eq. (19) with the asymptotic form of Eq. (16) in the outer region, we

obtain the dispersion relation [cf. Eq.(50) of Ref.12] as follows:

σ =
(

r2

a

)2 ∫ a

0

[εβp(r)]
2

(ι− 1)2 + lα(ω, r)− ω2/ω2
A

(
r

r2

)5 dr

r2

. (22)

The integrand in Eq. (22) has the pole at the Alfvén resonance 1 − ι = ω/ωA

in the outer region. The residue at this pole gives the continuum damping of the

fishbone mode. Away from the resonance the integrand is negligible in the sheared

region. Taking this into account and assuming vA(r) = const, we can write Eq. (22)

in the form:

σ =
(

r2

a

)2 ε2

(ι0 − 1)2 + lα(ω)− ω2/ω2
A

∫ r0

0
β2

p(r)
(

r

r2

)5 dr

r2

+ iσres(ω), (23)

or [
(ι0 − 1)2

(
1− v2

α

v2
A

Ω2

)
+ β̂αF (Ω)

]
(σ − iσres) =

(
r2

a

)2 ∫ r0

0
[εβp(r)]

2
(

r

r2

)5 dr

r2

,

(24)

where F (Ω) is given by Eq. (8),

β̂α ≡
4

π

ρ3
αR

r4
0

βα0, (25)

σres(ω) =
(

r2

a

)2

ε2β2
p(rA)

(
rA

r2

)5

lim
η→0

∫ rA+0

rA−0

1

(ι− 1)2 − (ω + iη)2/ω2
A

dr

r2

= π
(

r2

a

)2

[εβp(rA)]2
(rA/r2)

5

r2|∂/∂r(ι− 1)2|r=rA

, (26)

and rA is defined by

[ι(rA)− 1]2 =
ω2

ω2
A

. (27)
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We assume that the bulk plasma is marginally stable, i.e., βp is close to a certain

value, βmarg
p , determined by

(ι0 − 1)2σ =
(

r2

a

)2 ∫ r0

0

[
εβmarg

p (r)
]2 ( r

r2

)5 dr

r2

. (28)

Then, using Eq. (24), we obtain the following equations that determine threshold

beta of the energetic ions (for which Im Ω = 0) and the mode frequency:

β̂crit
α =

σ(ι0 − 1)2Ω2

σReF (Ω) + σresImF (Ω)
·
(

vα

vA

)2

, (29)

σΩ2v2
α[σImF (Ω)− σresReF (Ω)] = σresv

2
A

[
1− Ω2

(
vα

vA

)2
]

[σReF (Ω) + σresImF (Ω)] .

(30)

Let us consider a specific example. We assume that

pc = p0

[
1−

(
r

a

)2ν
]

(31)

and ι(r) is given by Eq. (20). Then it follows from Eq. (27) that rA ' r2(2ω/ωA)
1
2λ ,

and Eq. (26) is reduced to

σres(ω) =
π

λ

(
4ν

ν + 1

)2

β(0)2
(

R

a

)2 (r2

a

)4ν−2 (2ω

ωA

) 2ν+1
λ

−2

. (32)

It follows from Eq. (32) that σres does not depend on ω when 2ν + 1 − 2λ = 0.

To satisfy this condition, we take ν = 5/2, λ = 3. In addition, we take vα = vA,

which leads to ω/ωA = (ι0 − 1)Ω. Using Eq. (20), λ = 3 and assuming r0 ' r1

with ι(r1) = 1, ι(a) = 0, we obtain r2/a = 0.9 and r0/r2 ' 0.7. Using Eq. (21),

we have σ = 1/9. We specify the aspect ratio of the torus and central rotational

transform: R/a = 3 and ι0 − 1 ' 0.05. Now we can find βmarg
0 from Eqs. (28),

(31): βmarg
0 ' 8.7×10−2. Substituting this value to Eq. (32) we obtain σres ' 0.25.

Finally, we have from Eqs. (29), (30):

Ω ' 0.8, β̂crit
α ' 5.5× 10−4. (33)

We conclude from here that the mode frequency is ω = 0.04ωA. However, in the

considered example it was assumed that vα = vA, whereas in many cases of practical
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importance vα exceeds vA by a factor of two or more. Therefore, in those cases the

mode frequency will be higher, although it will be less than the frequency of Alfvén

eigenmodes, such as TAE (ωTAE = 0.5ωA). To evaluate the instability threshold,

we take into account that the factor ρ3
αR/r4

0 in Eq. (25) varies from ∼ 10−2 in

conventional tokamaks to ∼ 10−1 in spherical tori. We conclude from this and

Eq. (33) that βcrit
α0 is of the order of several per cent in tokamaks and about 10−3

in spherical tori. This difference is explained by the fact that relative orbit width,

∆/a, is larger in spherical tori.

III. INFERNAL FISHBONE MODE (ARBITRARY MODE NUMBERS)

In this section we eliminate the assumption m = n = 1, i.e., we consider a

plasma with q0 ' m/n, where the mode numbers are arbitrary. First of all, we

write the following equations in the shear-free core [cf. Eqs. (13), (14) and Eqs.

(56a,b) of Ref.12]

d

dr̃

{[(
ι

n
− 1

m

)2

+
lα

(mn)2
−
(

ω

ωAmn

)2
]
r̃3dξm

dr̃

}

−(m2 − 1)

[(
ι

n
− 1

m

)2

−
(

ω

ωAmn

)2
]
r̃ξm −

ε2

m2

[
1

2
(r̃β′p + 4βp)

2

+

(
1− n2

m2

)
(r̃β′p + 4βp)

]
r̃3ξm =

ε2n

2m2(m + 1)
r̃1+m(r̃β′p + 4βp)

d

dr̃
(r̃2+mξ̂m+1), (34)

1

m2(1 + m)2

[
d

dr̃

(
r̃3dξ̂m+1

dr̃

)
− [(m + 1)2 − 1]r̃ξ̂m+1

]
=

− 1

2nm2(1 + m)
r̃2+m d

dr̃

[
(r̃β′p + 4βp)r̃

1+mξm

]
, (35)

where ξm+1 ≡ εξ̂m+1, β′p = dβp/dr̃. The general solution of Eq. (35), which is

regular on the magnetic axis, can be written as

nξ̂m+1 = −(1 + m)

2r̃(2+m)

∫ r̃

0
dr̂(r̂β′p + 4βp)r̂

2+mξm + Cmr̃m. (36)

where Cm(r) = const. Putting Eq. (36) into Eq. (34) we obtain:
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d

dr

{[(
ι

n
− 1

m

)2

+
lα

(mn)2
−
(

ω

ωAmn

)2
]
r3dξm

dr

}

−(m2 − 1)

[(
ι

n
− 1

m

)2

−
(

ω

ωAmn

)2
]
rξm −

ε2

m2

(
1− n2

m2

)
d

dr
(r4βp)ξm

=
Cmε2

m2

d

dr
(r4βp)r

m−1. (37)

One can see that βp(r) ∝ r2ν−2 when the pressure profile is described by

Eq. (31). Using this fact and assuming |m − nq0| ∼ ε, we can conclude that

the ratio of the last term in the left-hand side (LHS) of Eq. (37) (this term repre-

sents the stabilizing effect of the average magnetic well) to the second term is of

the order of (r0/a)2ν � 1. When the last term on the LHS is neglected, Eq. (37)

can be easily integrated. Imposing the boundary condition ξm(a) = 0, we find:

ξm =
2ε2eβ̂p(ν + 1)(r2ν − 1)rm−1

[(2ν + m)2 − 1]lα(ω, r)/n2 + 4ν(ν + m)[(m/nq − 1)2 − (ω/ωAn)2]
. (38)

The magnitude ξm is negligible in the sheared region, except for the region in the

vicinity of the local Alfvén resonance. The dispersion relation can be obtained by

matching the asymptotic form of a solution of Eq. (36) with ξm given by Eq. (38)

in the sheared region, to the shear-free limit of Eq. (35) (with the right-hand side

neglected):

ξ̂m+1 ∝
(

r

rm+1

)m

+ σm

(
r

rm+1

)−(2+m)

, (39)

where ι(rm+1) = n/(m + 1). We find

σm =
1 + m

n(ν + m)

(
rm+1

a

)−2(m+1) (r0

a

)2(ν+m)

×
ε2β̂2

p(ν + 1)2

[(2ν + m)2 − 1]lα(ω)/n2 + 4ν(ν + m)[(m/nq0 − 1)2 − (ω/ωAn)2]
+ iσres,m. (40)

For the ι-profile given by

ι =
n

m + 1
+
(
ι0 −

n

m + 1

)1− (
r

rm+1

)2λ

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with λ ≥ m + 2, we have12

σm ' m

m + 2

(
1− m + 1

λ

)
, (41)

and the expression for σres,m takes the form

σres,m = π
(m + 1)3

8λn

ε2β̂2
p(ν + 1)2

ν(ν + m)

(
rm+1

a

)2(ν−1)
[
(m + 1)ω

nωA

] ν+m
λ

−2

. (42)

where β̂p = βpr
2−2ν .

Let us consider a possibility of the destabilization of infernal fishbones in NSTX

plasmas with q0
<∼ 2. This is of interest because bursting fishbone instabilities with

m/n > 1 were observed in NSTX.18 We use the following parameters: R ' 100

cm, a = 65 cm, B = 0.3 T, εα = 90 keV, vα/vA = 3, m = 2, n = 1, q0 = 1.7,

ν = 6, λ = 4. Then σ2 = 1/8, σres,2(ω) = const, r3/a ' 0.8, r0/a ' r2/a '

0.6. We assume that the plasma is at the margin of the MHD stability in the

absence of fast ions [lα = 0, ω = 0 in Eq. (40)], and take into account that

β̂p = (β0/ε
2)(m/n)2[ν/(ν + 1)]. This leads to βmarg

0 ' 0.35. Equation (40) then

yields at the margin of the fishbone stability (ImΩ = 0):

β̂crit
α ≈ 9Ω2(2ι0 − 1)2

ReF (Ω) + (σres,2/σ2)ImF (Ω)
, (43)

ImF (Ω)

[
9Ω2

(
σres,2

σ2

+
σ2

σres,2

)
− σres,2

σ2

]
= ReF (Ω), (44)

where σres,2 ≈ 0.55. We find from Eqs. (43), (44) that Ω ' 0.5, β̂crit
α ' 6 × 10−2.

Taking into account that r0 ' 0.6a ' 40 cm, ρα ' 20 cm, we obtain Rρ3
α/r4

0 ' 0.31.

Using the obtained magnitude of β̂crit
α and Eq. (25), we obtain that the threshold β

of the energetic ions is βcrit
α0 ' 15%. To calculate the mode frequency we take into

account that εα = 90 keV, q0 = 1.7, and R = 100 cm. This leads to f ≡ ω/(2π) =

0.5(2ι0 − 1)vα/(2πR) ∼ 40kHz. The obtained threshold magnitude of βα and the

mode frequency are quite reasonable. In particular, a bursting fishbone instability

with m = 2 and the initial frequency in the plasma frame f ' 45kHz was observed

when the central safety factor was q0
<∼ 2 in the NSTX shot #106218.18
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IV. SUMMARY AND CONCLUSIONS

We have predicted new circulating-ion-driven fishbone instabilities in toroidal

plasmas with q0 ∼ m/n ≥ 1 and low magnetic shear in the core region. The

instabilities have the frequency determined by the energetic particles, ω <∼ k‖0vα,

i.e., they are of the EPM type. This implies that the considered instabilities are

potentially dangerous, being able to expel energetic ions from the core region to the

wall or plasma periphery. The mode numbers, m and n, are not necessarily equal

to unity, and determine the spatial structure of the modes. When m = n = 1, the

structure of the considered mode strongly differs from the rigid kink displacement

taking place during conventional fishbone oscillations. Although our instability is

caused by the same resonance (ω = k‖v‖) as the conventional one, its physics differs

from that of the conventional instability. The reason is that all the energetic ions

in the core region (rather than only particles crossing the q = 1 surface) contribute

to the destabilization of the mode.

Because the considered instabilities involve most energetic ions, ε <∼ εα, they

can lead to a strong change of fusion reactivity and neutron emission from the

plasma. Therefore, it is of interest to apply the developed theory to experiments

where oscillations of neutron emission during fishbone activity took place. In par-

ticular, such oscillations were observed in NSTX.18 An example relevant to NSTX

was considered in the paper. It was found that there is agreement between the

experimentally observed frequency of the m/n = 2 fishbones and the calculated

frequency. However, we have to note that our analysis was made on a qualita-

tive level. A more detailed consideration is required to be able to identify the

observed instability, especially because the trapped-ion population arising mainly

due to Coulomb pitch angle scattering (partly slowed down particles) can also lead

to fishbone instability in the considered shot.18,23
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